Flow through an embankment [ULT]

12.1 Introduction

In this chapter the flow through an embankment will be considered. Flow takes place from the left side (river) to the right side (polder). As a result seepage will take place at the right side of the embankment. The position of the phreatic level depends on the river water level, which varies in time.

Objectives

- Performing Flow only analysis
- Using cross section curves

12.2 Geometry

Figure 12-1 (p. 195) shows the layout of the embankment problem where free surface groundwater flow occurs. The crest of the embankment has a width of 2.0 m. Initially the water in the river is 1.5 m deep. The difference in water level between the river and the polder is 3.5 m.

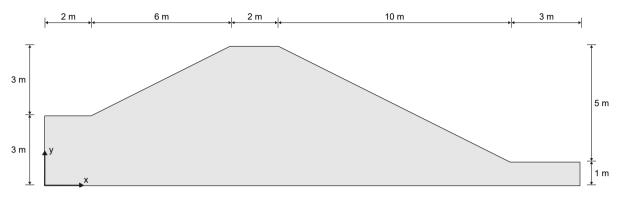


Figure 12-1: Geometry of the project

12.3 Create new project

To create a new project, follow these steps:

- Start the Input program and select Start a new project from the Quick select dialog box.
- In the **Project** tabsheet of the **Project properties** window, enter an appropriate title.
- In the Model tabsheet keep the default options for Model (Plane strain), and Elements (15-Node).
- Set the model dimensions to: $x_{min} = 0 \text{ m}$, $x_{max} = 23 \text{ m}$, $y_{min} = 0 \text{ m}$ and $y_{max} = 6 \text{ m}$
- Keep the default values for units, constants and the general parameters and click **OK**.

The **Project properties** window closes.

12.4 Define the soil stratigraphy

A number of boreholes has to be defined according to the information in Table 12–1 (p. 195).

Table 12–1: Information on the boreholes in the model

Borehole number	Location (x)	Head	Тор	Bottom
1	2	4.5	3	0
2	8	4.5	6	0
3	10	4.0	6	0
4	20	1.0	1	0

To define the soil stratigraphy:

- Click the **Create borehole** button $\stackrel{\bullet}{\blacksquare}$ and create a borehole at x = 2.
 - The Modify soil layers window pops up.
- Specify the head value as 4.5.
- Add a soil layer in the borehole. Set the top level to 3. No change is required for the bottom boundary of the layer.
- Create the rest of the required boreholes according to the information given in Table 12-1 (p. 195).

12.5 Create and assign material data set

A material data set needs to be created for the soil layer.

The sand layer has the following properties as shown in Table 12-2 (p. 196).

Table 12-2: Material properties of the embankment material (sand)

Parameter	Name	Sand	Unit		
General					
Material model	- Linear elastic		-		
Drainage type	-	Drained	-		
Unsaturated unit weight	Yunsat	20	kN/m ³		
Saturated unit weight	Ysat	20	kN/m ³		

Mechanical						
Young's modulus	E' _{ref}	10·10 ³	kN/m ²			
Poisson's ratio	ν	0.3	-			

Groundwater						
Classification type	-	Standard	-			
Soil class	-	Medium fine	-			
Flow parameters - Use defaults	-	From data set	-			
Horizontal permeability	k _x	0.02272	m/day			
Vertical permeability	k _y	0.02272	m/day			

To create the material set, follow these steps:

- Define the soil material according to the table above and assign the material dataset to the cluster. Skip the Interfaces and Initial tabsheets as these parameters are not relevant.
- After assigning the material to the soil cluster close the **Modify soil layers** window.

12.6 Generate the mesh

- Proceed to the Mesh mode.
- Select the two lines that form the left hand side slope and river bed as shown in Figure 12-2 (p. 197). In the **Selection Explorer** specify a **Coarseness factor** of 0.5.

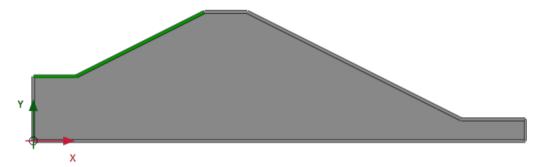


Figure 12-2: Selection of left hand side of slope

Click the **Generate mesh** button to generate the mesh.

The **Mesh options** window appears.

- Select the Fine option in the Element distribution drop-down menu and generate the mesh.
- Click the **View mesh** button 4 to view the mesh as shown in Figure 12–3 (p. 197).

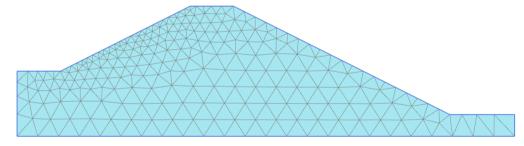


Figure 12-3: The generated mesh

Click the Close tab to close the Output program.

12.7 Define and perform the calculation

In this project only the flow related behaviour will be analysed. The calculation process consists of three phases that will be defined in the Staged construction mode. In the initial phase, the groundwater flow in steady state is calculated for an average river level. In Phase 1, the transient groundwater flow is calculated for a harmonic variation of the water level. In Phase 2, the calculation is similar as in Phase 1, but the period is longer.

Click the Staged construction tab to proceed to the corresponding mode. A global level is automatically created according to the head values specified for each borehole (Table 12-1 (p. 195)). The model in the Staged construction mode is shown in Figure 12-4 (p. 198).

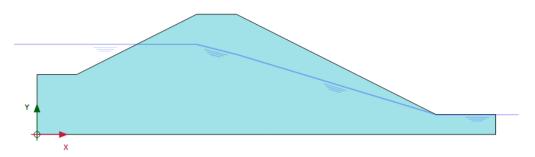


Figure 12-4: The model in the Staged construction mode

1 Note: Note that the 'internal' part of the global water level will be replaced by the result of the groundwater flow calculation.

12.7.1 Initial phase

- Double-click the initial phase in the **Phases** explorer.
- In the General subtree select the Flow only option as the Calculation type.
- The default values of the remaining parameters are valid for this phase. Click **OK** to close the Phases window.
- In the Model explorer expand the Model conditions subtree.
- In the Model conditions expand the GroundwaterFlow subtree. The default boundary conditions are relevant for the initial phase. Confirm that only the bottom boundary is closed. The expanded groundwater flow boundary conditions is shown in Figure 12–5 (p. 198).

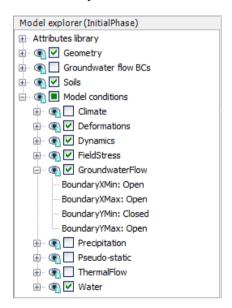


Figure 12-5: The groundwater flow boundary conditions for the initial phase

In the Model explorer expand the Groundwater flow BCs subtree. The boundary conditions at the extremities of the model are automatically created by the program and listed under the GWFlowBaseBC.

Note: Note that when the boundary conditions under the Groundwater flow BCs subtree are active, the model conditions specified in the GroundwaterFlow are ianored.

12.7.2 Phase 1-Transient ground water flow analysis

- Click the **Add phase** button to create a new phase.
- In the **Phases explorer** double-click the current phase.
- In the General subtree select the Transient groundwater flow option as pore pressure calculation type.
- Set the **Time interval** to 1 day.
- In the Numerical control parameters subtree set the Max number of steps stored parameter to 50. The default values of the remaining parameters will be used.
- Click **OK** to close the **Phases** window.
- Click the **Select multiple objects** button in the side toolbar.
- Click Select lines > Select water boundaries.
- Select the hydraulic boundaries as shown in Figure 12-6 (p. 199).

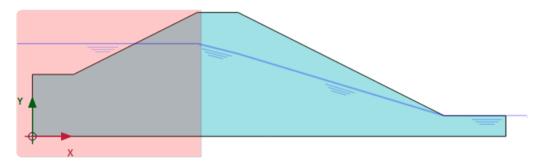


Figure 12-6: Selected hydraulic boundaries

- Right-click and click Activate.
- 11 In the **Selection explorer** set the **Behaviour** parameter to **Head**.
- Set h_{ref} to 4.5 m.
- Select the **Time dependent** option in the **Time dependency** drop-down menu.
- 14 Click on the **Head function** parameter.
- Click the **Add** button lacktriangle to add a new head function.
- In the Flow functions window select the Harmonic option in the Signal drop-down menu. Set the amplitude to 1 m, the phase angle to 0° and the period to 1 day.

The flow function for the rapid phase is shown in <u>Figure 12–7 (p. 200)</u>.

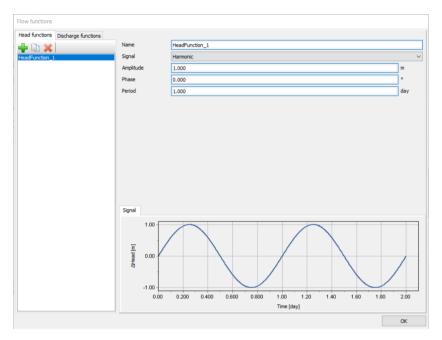


Figure 12-7: The flow function for the rapid case

Click **OK** to close the **Flow functions** window.

12.7.3 Phase 2-Long term groundwater flow analysis

- Click the **Add phase** button to create a new phase.
- In the **Phases explorer** double-click the current phase.
- 3 In the General subtree select the Initial phase in the Start from phase drop-down menu.
- Select the **Transient groundwater flow** option as **Pore pressure calculation type**.
- 5 Set the **Time interval** to 10.0 day.
- 6 In the Numerical control parameters subtree set the Max number of steps stored parameter to 50. The default values of the remaining parameters will be used.
- 7 Click **OK** to close the **Phases** window.
- Make sure that the same boundaries are selected as in Phase 1.
- 9 In the **Selection explorer** click on the **Head function** parameter.
- 10 Click the **Add** button to add a new head function.
- In the Flow functions window select the Harmonic option in the Signal drop-down menu. Set the amplitude to 1 m, the phase angle to 0° and the period to 10 day as shown in Figure 12-8 (p. 201).

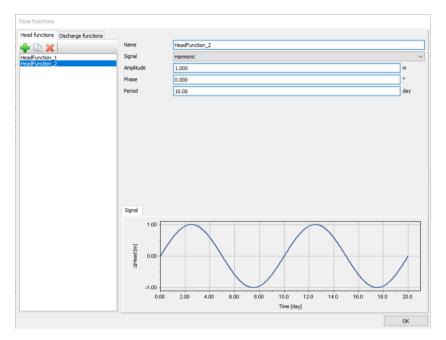


Figure 12-8: The flow function for the slow case

Click **OK** to close the **Flow functions** window.

12.7.4 Execute the calculation

To select points to be considered in curves:

In the Staged construction mode click the Select point for curves button \checkmark in the side toolbar.

The **Connectivity plot** is displayed in the Output program.

- In the **Select points** window select nodes located nearest to (0 3) and (8 2.5) to be considered in curves.
- Click **Update** to close the output program.
- Click the **Calculate** button **I** to calculate the project.
- 🔙 Save the project after the calculation has finished.

12.8 Results

In the Output program the Create animation tool can be used to animate the results displayed in the Output program. To create the animation follow these steps:

- 1. Click the menu Stresses > Pore pressures > Groundwater head.
- 2. Select the menu File > Create animation. The corresponding window pops up.
- 3. Define the name of the animation file and the location where it will be stored. By default the program names it according to the project and stores it in the project folder. In the same way animations can be created to compare the development of pore pressures or flow field.
- 4. Deselect the Initial phase and Phase 2, such that only Phase 1 is included in the animations and rename the animation accordingly. The Create animation window is shown in Create animation window:

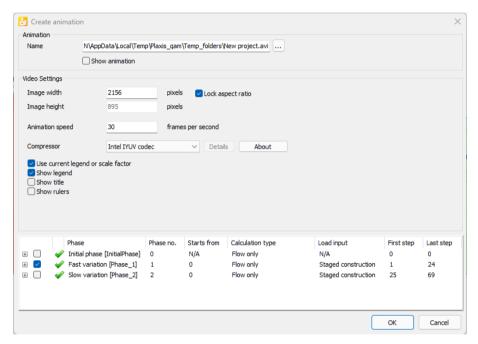


Figure 12-9: Create animation window

To view the results in a cross section:

- 1. Click the Cross section button in the side toolbar. The Cross section points window pops up and the start and the end points of the cross section can be defined. Draw a cross section through the points (2.0 3.0) and (20.0 1.0). The results in the cross section are displayed in a new window.
- 2. In the Cross section view select the menu Stresses > Pore pressures > p active.
- window pops up, select the menu **Selection style > Individual steps**.
- 4. Select Phase 1. The variation of the results in the cross section is displayed in a new window as shown in Figure 12-10 (p. 203).
- 5. Do the same for Phase 2. This may take about 30 seconds which is shown in Figure 12-11 (p. 203).
- 6. The variation of the results due to different time intervals in harmonic variation at a specific cross section can be compared, see the figures below.

It can be seen that the slower variation of the external water level has a more significant influence on the pore pressures in the embankment and over a larger distance.

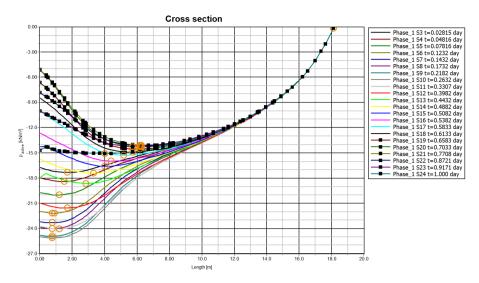


Figure 12-10: Active pore pressure variation in the cross section in Phase 1

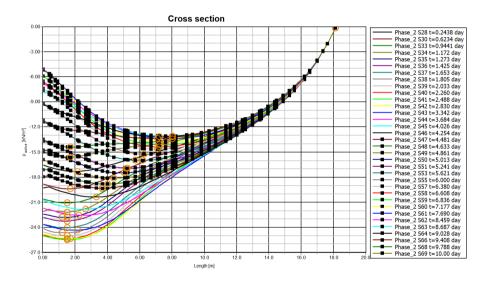


Figure 12-11: Active pore pressure variation in the cross section in Phase 2